Modeling the cell cycle: New Skills in Undergraduate Biology Education

Raquell M. Holmes, Ph.D. Center for Computational Science Boston University Visiting Assistant Professor BEDROCK project, BioQUEST

Investigating Interdisciplinary Interactions, BioQUEST Workshop, 2005

Goal of today's 1.5hr

- · Introduce you to what was done
- Introduce you to modeling the cell cycle
- · Relationship to new skills:
 - Education reform looks at engaging students in:
 - In biology, scientists are having to learn new ways of understanding biological systems
 - New ways are quantitative, theoretical and conceptual

The Lens

- Performance
- · Co-teaching
- · Cellular to biochemical view
 - Biology, math, models: conceptual, mathematical, computers

What do I mean by performance?

- · Not a measure, rather an activity
- · Activity of becoming:
 - students are both who they are: "students"and who they are not: "scientists/mathematicians"
- Vygotsky: zones of proximal development
 Co-learning, group, social, activity
- · Performatory
 - Understanding developed in practice
 - All Stars Project, Inc. and East Side Institute

Classroom as performance

- Directors: John Jungck and Raquell Holmes
- · Performers: Instructors and students
- Play: Modeling the cell cycle
- Length: Five weeks, small groups
- Props: Stella, former scripts (models) and text.
- Direction: create models and discover what you need.

Activity: Performing as scientists

- The background: biology
- The tools: computer modeling
- The challenge: take what is known and create something new
 - New understanding
 - New model

What we did and we will do

- · Research Course
- Students perform as scientists
- Introduced 4-5week module on modeling the cell cycle
- Students worked in groups not from same year
 - on first exercise only
- Hands on exercise
- Perform as students/scientists
 - New to topic
 - Some understanding
 Different skills
- Modified version of first modeling lab in class
- Work in groups not from same discipline

Today's collective performance

- As a large group:
 - Introduction to biology
 - Introduction to modeling
- Smaller groups (2 or 3):
 - Create models of aspects of the cell cycle

Cell Cycle/ Cell division

- What do we know?
 A collective version/story
- Why do we care?
 A collective version/story

Group sharing or improvisation

Key experiments

See Figure 1-10 of The Cell Cycle by Murray and Hunt, 1993.

Fusion of somatic cells in different cell cycle stages illustrates logic of cell cycle progression.

Key experiments contd.

See Figure 2-5 of The Cell Cycle by Murray and Hunt, 1993.

Cytoplasmic transfer experiments demonstrates presence of maturation promoting factor: MPF.

Murray and Hunt, 1993. The Cell Cycle

What is MPF?

- What characteristics does it have or have to have?
 - How can this function be regulated?

What is MPF?

- · What characteristics does it have or have to have?
 - Temporally regulated function
 - "On" during M-phase, "off" during interphase
 Biological assay
 - In embryos must cycle, show periodicity
 - How can this function be regulated?
 - · Regulated synthesis
 - · Regulated form (phosphorylation, protein complexes)
 - Regulated degradation

- · Cyclin synthesis is constant
- MPF activity is turned "on" and "off"
- MPF activity is turned on by cyclin
- · Cyclin is degraded

Creating a Computational Model

- · Concept Map
- Factors and relationships between factors
- Describe relationships mathematically
- Solve equations: using computer tools
- · View and interpret results

To be performed: See First Lab Ex.

Draw flow diagrams/concept map for the statements provided below. Keep your hand drawings and turn them in.

- 1. System statements
 - inactive MPF becomes active MPF
 - Active MPF becomes inactive MPF
- 2. System statements
 - Cyclin is synthesized and degraded
 - Cyclin stimulates inactive MPF to become active MPF

Designing a dynamic experiment

- Concept Map
- Factors and relationships between factors
- Describing relationship mathematically
- What rate laws are known to describe the enzymatic reaction?
 - Types of rate laws/kinetic models
 - Constant, mass action, michaelis menten...
 - Initial conditions/values
 - Often unitless in modeling papers Opportunity to work with research papers

The model we're playing with

Asks: are the minimal components of the system sufficient to account For the oscillation patterns in early embryos? Golbeter, 1991

STELLA model: Continuous, non-stochastic, Non-spatial, population

Ex contd.

- B. Create your concept maps in Stella.
- C. Assume the following values for reactions and variables and enter them to your Stella model:
 - 1. All **reactions** are linear and based on the law of mass action (rate constant x substrate).
 - 2. Vary your rate constants and amounts

Models of cell cycle taking into account the following: 1. Cell size in yeast

2. MPF self-activation of MPF in mammalian or amphibian cells

3. Binding rates of cyclin to cdc2 in yeast, mammalian or amphibian cells

4. Phosphorylation rates of cdc2/MPF in yeast, mammalian or amphibian cells

5. Mechanisms of threshold generation: Michaelis-menten models

6. Ubiquitination and cyclin degradation mechanisms yeast, mammalian or amphibian cells

 $7.\ Additional regulators of activation or inactivation of MPF yeast, mammalian or amphibian cells$

• Rarely related results to rate equations